Comprehensive Analysis of Non Redundant Protein Database

Author:

Bagheri Hamid1ORCID,Dyer Robert2,Severin Andrew1,Rajan Hridesh1

Affiliation:

1. Iowa State University

2. University of Nebraska-Lincoln

Abstract

Abstract Background: Scientists around the world use NCBI’s non-redundant (NR) database to identify the taxonomic origin and functional annotation of their favorite protein sequences using BLAST. Unfortunately, due to the exponential growth of this database, many scientists do not have a good understanding of the contents of the NR database. There is a need for tools to explore the contents of large biological datasets, such as NR, to better understand the assumptions and limitations of the data they contain. Results: Protein sequence data, protein functional annotation, and taxonomic assignment from NCBI’s NR database were placed into a BoaG database, a domain-specific language and shared data science infrastructure for genomics, along with a CD-HIT clustering of all these protein sequences at different sequence similarity levels. We show that BoaG can efficiently perform queries on this large dataset to determine the average length of protein sequences and identify the most common taxonomic assignments and functional annotations. Using the clustering information, we also show that the non-redundant (NR) database has a considerable amount of annotation redundancy at the 95% similarity level. Conclusions: We implemented BoaG and provided a web-based interface to BoaG’s infrastructure that will help researchers to explore the dataset further. Researchers can submit queries and download the results or share them with others. Availability and implementation: The web-interface of the BoaG infrastructure can be accessed here: http://boa.cs.iastate.edu/boag. Please use user = boag and password = boag to login. Source code and other documentation are also provided as a GitHub repository: https://github.com/boalang/NR_Dataset.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3