An automatic pipeline for PET/MRI attenuation correction validation in the brain

Author:

Hamdi Mahdjoub1ORCID,Ying Chunwei2,An Hongyu2,Laforest Richard2

Affiliation:

1. Washington University In St Louis: Washington University in St Louis

2. Washington University in St Louis School of Medicine Mallinckrodt Institute of Radiology

Abstract

Abstract Purpose PET/MRI quantitative accuracy for neurological applications is challenging due to accuracy of the PET attenuation correction. In this work, we proposed and evaluated an automatic pipeline for assessing the quantitative accuracy of four different MRI = based attenuation correction (PET MRAC) approaches. Methods The proposed pipeline consists of a synthetic lesion insertion tool and the FreeSurfer neuroimaging analysis framework. The synthetic lesion insertion tool is used to insert simulated spherical, and brain regions of interest (ROI) into the PET projection space and reconstructed with four different PET MRAC techniques, while FreeSurfer is used to generate brain ROIs from T1 weighted MRI image. Using a cohort of 11 patients' brain PET dataset, the quantitative accuracy of four MRAC(s), which are: DIXON AC, DIXONbone AC, UTE AC, and Deep learning trained with DIXON AC, named DL-DIXON AC, were compared to the PET-based CT attenuation correction (PET CTAC). MRAC to CTAC activity bias in spherical lesions and brain ROIs were reconstructed with and without background activity and compared to the original PET images. Results The proposed pipeline provides accurate and consistent results for inserted spherical lesions and brain ROIs inserted with and without considering the background activity and following the same MRAC to CTAC pattern as the original brain PET images. As expected, the DIXON AC showed the highest bias; the second was for the UTE, then the DIXONBone, and the DL-DIXON with the lowest bias. For simulated ROIs inserted in the background activity, DIXON showed a -4.65% MRAC to CTAC bias, 0.06% for the DIXONbone, -1.70% for the UTE, and − 0.23% for the DL-DIXON. For lesion ROIs inserted without background activity, DIXON showed a -5.21%, -1% for the DIXONbone, -2.55% for the UTE, and − 0.52 for the DL-DIXON. For MRAC to CTAC bias calculated using the same 16 FreeSurfer brain ROIs in the original brain PET reconstructed images, a 6.87% was observed for the DIXON, -1.83% for DIXON bone, -3.01% for the UTE, and − 0.17% for the DL-DIXON. Conclusion The proposed pipeline provides accurate and consistent results for synthetic spherical lesions and brain ROIs inserted with and without considering the background activity; hence a new attenuation correction approach can be evaluated without using measured PET emission data.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3