Affiliation:
1. Chinese Academy of Medical Sciences, Peking Union Medical College
2. Chinese Academy of Medical Science and Peking Union Medical College
Abstract
Abstract
Cryoinjury mitigation is key in cell cryopreservation. Here, we aimed to assess the effectiveness of nanographene oxide (nano-GO) for improving cryoprotectant agents (CPAs) in human adipose stem cell (hADSC) cryopreservation. For in vitro experiments, nano-GO (5 µg/mL) was added to the CPAs in the control, and passage (P) 2 hADSCs were collected and cryopreserved for around two weeks. We compared cytotoxicity, cell viability, immunophenotypes, proliferation, cell apoptosis, and tri-lineage differentiation. In vivo studies used lipoaspirate to create non-enriched or hADSC-enriched fat tissues by combining it with PBS or hADSCs cryopreserved with the aforementioned CPAs. Each nude mouse received a 0.3 mL subcutaneous injection of the graft. At 12 weeks, the grafts were harvested. Histology, adipocyte-associated genes and protein, vascular density and angiogenic cytokines, macrophage infiltration, and inflammatory cytokines were analyzed. Nano-GO CPA contributed to increased cell viability, improved cell recovery, and lowered levels of early apoptosis. Nano GO at concentrations of 0.01 to 100 µg/mL caused no cytotoxicity to hADSCs. The absence of nano GOs in the intracellular compartments of the cells was confirmed by transmission electron microscopy. The fat grafts from the CPA-GO group showed more viable adipocytes and significantly increased angiogenesis compared to the PBS and CPA-C groups. Adding hADSCs from the CPA-GO group to the graft reduced macrophage infiltration and MCP-1 expression. Nano-GO plays an anti-apoptotic role in the cryopreservation of hADSCs, which could improve the survival of transplanted fat tissues, possibly via improved angiogenesis and lower inflammatory response in the transplanted adipose tissue.
Publisher
Research Square Platform LLC