Cot-DCN-YOLO: Self-attention-enhancing YOLOv8s for Detecting Garbage Bins in Urban Street View Images

Author:

Dai Jiguang1,Xu Wenhao1,Zhang Tengda1,Wu Yujie1,Chen Tong1,Li Yan1

Affiliation:

1. Liaoning Technical University

Abstract

Abstract Accurately and quickly obtaining information from garbage bins has great application value in smart city construction and urban environmental management. However, existing deep learning methods are affected by factors such as occlusion, large geometric appearance differences, and multi-scale, leading to missed detections in garbage bin detection results. We propose a Cot-DCN-YOLO model for garbage bin detection, which is designed to effectively extract contextual information with the Double Convolutions Semantic Transformation (DCST) module, which addresses the vulnerability of garbage bins to occlusion. According to the large geometric appearance differences when garbage bins are damaged, we propose the C2f embedded with DCNv2 (DC2f) module, which can adaptively adjust the target shape with a flexible receptive field. Furthermore, considering the multi-scale characteristics of garbage bins in images, we introduce the SPPCSPC module. Experimental results show that compared with other methods, Cot-DCN-YOLO achieves the best results on our self-made garbage bin dataset, with Precision, Recall, and mAP reaching 77.1%, 69.4%, and 74.0%, respectively, outperforming existing SOTA methods.

Publisher

Research Square Platform LLC

Reference126 articles.

1. Annunziata, R., Sagonas, C., & Calì, J. (2018). DeSTNet: Densely Fused Spatial Transformer

2. Networks. https://doi.org/10.48550/arXiv.1807.04050

3. Bui, M. T., V Frémont, Boukerroui, D., & Letort, P. (2015). Deformable parts model for

4. people detection in heavy machines applications. International Conference on Control

5. Bertinetto, L., Valmadre, J., Golodetz, S., Mikšík, O., & Torr, P.H. (2015). Staple:

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3