Manifold-based Sparse Representation for Opinion Mining

Author:

Karimi Zohre1

Affiliation:

1. Damghan University

Abstract

Abstract This paper focuses on how to enhance feature representation for opinion mining. The classical feature representation methods suffer from high dimensionality, sparsity , noisy, irrelevant and redundant information. It is proposed to exploit the manifold assumption and sparse property as prior knowledge for opinion representation to learn effective features. First, the graph representation of user reviews based on the mentioned prior knowledge is learned. Then, the spectral properties of the learned graph are exploited to present data in a new feature space. The proposed algorithm is applied to four various common input features on two benchmark datasets, Internet Movie Database (IMDB) and Amazon review dataset. Our experiments reveal that the proposed algorithm yields considerable enhancements in terms of F-measure, accuracy, and other standard performance measures compared to the combination of state-of-the-art features with various classifiers. The highest classification accuracies of 99.15 and 91.97 are obtained in the proposed method on IMDB and Amazon exploiting linear SVM classifier, respectively. The impact of parameters of the proposed algorithm is also investigated in this paper.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3