The impact of changing exposure to PM 2.5 on mortality for US diplomats with multiple international relocations: A modelling study

Author:

Edwards Leslie1,Milner James1,Wilkinson Paul1,Milojevic Ai1

Affiliation:

1. London School of Hygiene & Tropical Medicine

Abstract

Abstract Background Current evidence linking fine particulate matter (PM2.5) exposure and mortality is primarily based on long-term exposure for persons that live in the same residence, city and/or country throughout the study, with few residential moves or relocations. We propose a novel method to quantify the health impacts of PM2.5 for United States (US) diplomats who regularly relocate to international cities with different PM2.5 levels.Methods Life table methods were applied at an individual-level to US mortality statistics using the World Health Organization’s database of city-specific PM2.5 annual mean concentrations. Global Burden of Disease concentration-response (C-R) functions were used to estimate cause-specific mortality and days of life lost (DLL) for a range of illustrative 20-year diplomatic assignments for three age groups. Time lags between exposure and exposure-related mortality risks were applied. Sensitivity analysis of baseline mortality, exposure level, C-R functions and lags was conducted. The effect of mitigation measures, including the addition of air purifiers, was examined.Results DLL due to PM2.5 exposure for a standard 20-year assignment ranged from 0.3 days for diplomats’ children to 84.1 days for older diplomats. DLL decreased when assignments in high PM2.5 cities were followed by assignments in low PM2.5 cities: 162.5 DLL when spending 20 years in high PM2.5 cities compared to 62.6 DLL when spending one of every four years (5 years total) in a high PM2.5 city for older male diplomats. Use of air purifiers and improved home tightness in polluted cities may halve DLL due to PM2.5 exposure. The results were highly sensitive to lag assumptions: DLL increased by 68% without inception lags and decreased by 59% without cessation lags for older male diplomats.Conclusion We developed a model to quantify health impacts of changing PM2.5 exposure for a population with frequent relocations. Our model suggests that alternating assignments in high and low PM2.5 cities may help reduce PM2.5-related mortality burdens. Adding exposure mitigation at home may help reduce PM2.5 related mortality. Further research on outcome-specific lag structures is needed to improve the model.

Publisher

Research Square Platform LLC

Reference38 articles.

1. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015;Cohen AJ;Lancet,2017

2. Fine particulate air pollution and human mortality: 25 + years of cohort studies;Pope CA;Environ Res,2020

3. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis;Chen J;Environ Int,2020

4. Health Effects Institute. Systematic Review and Meta-analysis of Selected Health Effects of Long-Term Exposure to Traffic-Related Air Pollution. 2022.

5. Pollution and health: a progress update;Fuller R;Lancet Planet Health,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3