Enhanced Component-Wise Natural Gradient Descent Training Method for Deep Neural Networks

Author:

Tran Sang Van1,Nakata Toshiyuki1,Yamaguchi Rie Shigetomi1,Mhd Irvan1,Yoshimoto Yoshihide1

Affiliation:

1. The University of Tokyo

Abstract

Abstract This research significantly advances Component-Wise Natural Gradient Descent (CW-NGD), a network training method that facilitates efficient parameter updates by approximating the curvature Fisher Information Matrix. By the investigation of the exponential moving average integration, and appropriate hyperparameters selection obtained from the comprehensive analysis results, significant enhancements in CW-NGD's performance have been achieved. Particularly we enhance CW-NGD to operate across multiple GPUs, bypassing the memory constraints when working with large-scale models. These improvements enable CW-NGD to attain state-of-the-art accuracy on deep networks, which prior work could not achieve In an expansive comparison across four diverse datasets and models, CW-NGD achieves similar or superior accuracy while outperforming all other established network training methods, encompassing Adam, Stochastic Gradient Descent, and Kronecker-factored Approximate Curvature, in terms of convergence speed and stability. This study establishes CW-NGD as a robust and versatile network training technique, showcasing its adaptability and potential applications across various domains.

Publisher

Research Square Platform LLC

Reference88 articles.

1. {Martens, James} and {Grosse, Roger} (2015) Optimizing Neural Networks with Kronecker-factored Approximate Curvature. PMLR, 07--09 Jul, Proceedings of the 32nd ICML, 37

2. Martens, James (2010) Deep learning via Hessian-free optimization. 735--742, 08, Proceedings of the 27nd ICML

3. Liu, Dong C and Nocedal, Jorge (1989) On the limited memory BFGS method for large scale optimization. Mathematical programming 45(1): 503--528 Springer

4. Amari, Shun-ichi (1993) Backpropagation and stochastic gradient descent method. Neurocomputing 5(4-5): 185--196 Elsevier

5. Vinyals, Oriol and Povey, Daniel (2012) Krylov Subspace Descent for Deep Learning. PMLR, PMLR, 22, Proceedings of the 15th International Conference on AISTATS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3