A Graph Neural Network Approach for Hierarchical Mapping of Breast Cancer Protein Communities

Author:

Zhang Xiao1,Liu Qian1

Affiliation:

1. University of Winnipeg

Abstract

Abstract

Background Comprehensively mapping the hierarchical structure of breast cancer protein communities and identifying potential biomarkers from them is a promising way for breast cancer research. Existing approaches are subjective and fail to take information from protein sequences into consideration. Deep learning can automatically learn features from protein sequences and protein-protein interactions for hierarchical clustering. Results Using a large amount of publicly available proteomics data, we created a hierarchical tree for breast cancer protein communities using a novel hierarchical graph neural network, with the supervision of gene ontology terms and assistance of a pre-trained deep contextual language model. Then, a group-lasso algorithm was applied to identify protein communities that are under both mutation burden and survival burden, undergo significant alterations when targeted by specific drug molecules, and show cancer-dependent perturbations. The resulting hierarchical map of protein communities shows how gene-level mutations and survival information converge on protein communities at different scales. Internal validity of the model was established through the convergence on BRCA2 as a breast cancer hotspot. Further overlaps with breast cancer cell dependencies revealed SUPT6H and RAD21, along with their respective protein systems, HOST:37 and HOST:861, as potential biomarkers. Using gene-level perturbation data of the HOST:37 and HOST:861 gene sets, three FDA-approved drugs with high therapeutic value were selected as potential treatments to be further evaluated. These drugs include mercaptopurine, pioglitazone, and colchicine. Conclusion The proposed graph neural network approach to analyzing breast cancer protein communities in a hierarchical structure provides a novel perspective on breast cancer prognosis and treatment. By targeting entire gene sets, we were able to evaluate the prognostic and therapeutic value of genes (or gene sets) at different levels, from gene-level to system-level biology. Cancer-specific gene dependencies provide additional context for pinpointing cancer-related systems and drug-induced alterations can highlight potential therapeutic targets. These identified protein communities, in conjunction with other protein communities under strong mutation and survival burdens, can potentially be used as clinical biomarkers for breast cancer.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3