Adsorption equilibria and kinetics of CO2, CH4, and N2 on activated carbon and carbon molecular sieve

Author:

chen Si'ang1,Wu Wenling1,Niu Zhaoyang1,Kong Deqi1,Li Wenbin1,Tang Zhongli1,Zhang Donghui1

Affiliation:

1. Tianjin University

Abstract

Abstract Flue gas and coal bed methane are two important sources of greenhouse gases. Pressure swing adsorption process has a wide range of application in the field of gas separation, and the selection of adsorbent is crucial. In this regard, in order to assess the better adsorbent for separating CO2 from flue gas and CH4 from coal bed methane, adsorption isotherms of CO2, CH4 and N2 on activated carbon and carbon molecular sieve are measured at 303.15, 318.15, and 333.15 K, and up to 250 kPa. The experimental data fits better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models, and Clausius-Clapeyron equation was used to calculate the isosteric heat. Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO2 > CH4 > N2. The adsorption kinetics are calculated by the pseudo-first kinetic model, and the order of adsorption rates on activated carbon is N2 ≥ CH4 > CO2, while on carbon molecular sieve it is CO2 ≥ N2 > CH4. It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon, while kinetic diameter is the main resistance factor for carbon molecular sieve. Moreover, the adsorption selectivity of CH4/N2 and CO2/N2 were estimated with the ideal adsorption solution theory, and carbon molecular sieve performed best at 318.15 K for both CO2 and CH4 separation. Overall, the study suggested that carbon molecular sieve is a better option for separating flue gas and coal bed methane.

Publisher

Research Square Platform LLC

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3