Kinetics, Isotherm, Mechanism, and Recyclability of Novel Nano-sized Ce4+-Doped Ni-Al Layered Double Hydroxide for Defluoridation of Aqueous Solutions

Author:

Wagassa Ararso Nagari1,Shifa Tofik Ahmed2,Bansiwal Amit1ORCID,Zereffa Enyew Amare3

Affiliation:

1. CSIR-National Environmental Engineering Research Institute

2. Ca'Foscari University of Venice: Universita Ca' Foscari

3. Adama Science and Technology University

Abstract

Abstract Excessive fluoride removing from aqueous solutions is of utmost importance as it has adverse impact on human health. This study investigates the defluoridation efficiency of a novel nano-sized Ce+4-doped Ni/Al layered double hydroxide (Ni-Al-Ce LDH) for aqueous solutions. The synthesized Ni-Al-Ce LDH exhibited a well-defined nanoscale plate-like morphology and a high surface area with an average size of 11.51 nm, which contributed to its enhanced fluoride adsorption capacity. XRD, SEM, HRTEM, and BET studies confirmed these characteristics. XPS analysis confirmed the presence of Ce4+ ions within the Ni-Al LDH. The experimental results indicated that the process of defluoridation followed a pseudo-second order model of kinetics, suggesting a chemisorption mechanism. The fluoride adsorption isotherms demonstrated well fits to the Freundlich, Langmuir and Jovanovic models, indicating both monolayer and multilayer fluoride adsorption on the Ce-doped Ni-Al LDH. The maximum adsorption capacity was found to be 238.27 mg/g (Langmuir) and 130.73 mg/g (Jovanovic) at pH 6.0 and 25°C. The proposed mechanisms for fluoride adsorption on the LDH include ion exchange, surface complexation, hydrogen bonding, and ligand exchange. The Ni-Al-Ce LDH nanomaterial exhibited good recyclability, maintaining 71% of the fluoride adsorption efficiency even after four consecutive cycles. This study highlights the significant role of Ce doping in improving the performance of Ni-Al LDH as a defluoridation adsorbent.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3