Energy transfer driven brightening of MoS2 neutral exciton by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures

Author:

Hu Zehua1,Dini Kevin2,Fieramosca Antonio3,Krisnanda Tanjung2,Zhao Jiaxin4,Su Rui2ORCID,Wang Junyong5,Watanabe Kenji6ORCID,Taniguchi Takashi7ORCID,Eda Goki5ORCID,Wang Xiao2ORCID,Liew Timothy2ORCID,Xiong Qihua8ORCID

Affiliation:

1. Nanjing University

2. Nanyang Technological University

3. CNR NANOTEC

4. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University

5. National University of Singapore

6. National Institute for Materials Science

7. National Institute for Materials Science, Tsukuba, Ibaraki

8. Tsinghua University

Abstract

Abstract Energy transfer is a ubiquitous phenomenon that delivers energy from a blue-shifted emitter to a red-shifted absorber, which has enabled plentiful photonic applications of light-emitting diodes (LEDs), lasers, solar cells, and display devices1–5. The fast-emerging two-dimensional (2D) semiconductors offer unique opportunities for exploring new energy transfer mechanisms in the atomic-scale limit enabled by confined geometry and van der Waals architectures, which transcend the conventional Förster and Dexter types. Herein, we have successfully designed and constructed a planar optical microcavity-confined MoS2/hBN/WS2 heterojunction, which realizes the strong coupling among donor exciton, acceptor exciton, and cavity photon mode for the first time. Such a configuration demonstrates the unconventional energy transfer via ultrafast polariton relaxation, leading to the brightening of MoS2 neutral exciton with a record-high enhancement factor of ~ 440, i.e., two-order-of-magnitude higher than the data reported to date. A short characteristic time of ~ 1.3 ps is extracted by setting up a high-resolution k-space transient-reflectivity spectroscopy. This ultrafast polariton relaxation is attributed to the significantly enhanced intra- and inter-branch exciton-exciton scattering to overcome the hot phonon bottleneck effect, as revealed by theoretical calculation with coupled rate equations. Our study not only opens a new direction of microcavity 2D semiconductor heterojunctions for high-brightness ultrafast polaritonic light sources, but also provides a new paradigm to study the ultrafast polariton carrier dynamics.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3