Identification of the Molecular Subtypes of Acute Ischemic Stroke Using Bioinformatics and Machine Learning

Author:

Wu Zongkai1,Fan Hongzhen2,Qin Lu2,Niu Xiaoli2,Chu Bao2,Zhang Kaihua2,Gao Yaran2,Wang Hebo1

Affiliation:

1. Hebei Medical University

2. Hebei General Hospital

Abstract

Abstract Acute ischemic stroke (AIS) is a severe disorder characterized by complex pathophysiological processes, which can lead to disability and death. This study aimed to determine necroptosis-associated genes in Acute ischemic stroke (AIS) and to investigate their potential as diagnostic and therapeutic targets for AIS. Expression profiling data were acquired from the Gene Expression Omnibus database, and necroptosis-associated genes were retrieved from GeneCards. The differentially expressed genes (DEGs) and necroptosis-related genes were intersected to obtain the necroptosis-related DEGs (NRDEGs) in AIS. In AIS, a total of 76 genes associated with necroptosis (referred to as NRDEGs) were identified. Enrichment analysis of these genes revealed that they were primarily enriched in pathways known to induce necroptosis. Using Weighted gene co-expression network analysis (WGCNA), five co-expression modules consisting of NRDEGs were identified, along with two modules that exhibited a strong correlation with AIS. Protein-protein interaction (PPI) analysis resulted in the identification of 20 hub genes. The Least absolute shrinkage and selection operator (LASSO) regression model demonstrated promising potential for diagnostic prediction. The receiver operating characteristic (ROC) curve validated the diagnostic model and selected nine characteristic genes that exhibited statistically significant differences (p < 0.05). By employing consensus clustering, distinct patterns of necroptosis were identified using these nine signature genes. The results were verified by quantitative PCR (qPCR) in HT22 cells and an external data set. Furthermore, the analyzed ceRNA network included nine lncRNAs, six miRNAs, and three mRNAs. Overall, this study offers novel insights into the molecular mechanisms underlying NRDEGs in AIS. The findings provide valuable evidence and contribute to our understanding of the disease.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3