Understanding oxidation of Fe-Cr-Al alloys through Explainable Artificial Intelligence

Author:

Roy Indranil1ORCID,Feng Bojun1,Roychowdhury Subhrajit1,Ravi Sandipp Krishnan1,Umretiya Rajnikant V1,Reynolds Christopher1,Ghosh Sayan1,Rebak Raul B1,Hoffman Andrew1

Affiliation:

1. GE Research

Abstract

AbstractThe effect of alloy composition and oxidation condition on specific mass gain of FeCrAl alloys was studied and analyzed using a combination of experimental and AI approaches. A Neural Network (NN) classification model was used on the experimental FeCrAl dataset produced at GE Research from steam oxidation studies at both high (~ 1000°C) and low temperature (~ 400°C). Furthermore, using the Shapley Additive exPlanations (SHAP) explainable Artificial Intelligence (XAI) tool, we explore how the NN can identify an alloy at specific oxidation condition to form a protective oxide or not. We found high Al and Cr concentration increases the chances of forming protective oxide layer, which is consistent with literature studies. Contrary to Al and Cr, the presence of Mo in FeCrAl creates thick unprotective oxide scale that results in high mass gain per unit area.

Funder

National Nuclear Security Administration

Publisher

Research Square Platform LLC

Reference27 articles.

1. J. Ling, M. Hutchinson, E. Antono, S. Paradiso, B. Meredig, High-Dimensional Materials and Process Optimization Using Data-Driven Experimental Design with Well-Calibrated Uncertainty Estimates, Integr Mater Manuf Innov. 6 (2017) 207–217. https://doi.org/10.1007/s40192-017-0098-z.

2. Data-Guided Feature Identification for Predicting Specific Heat of Multicomponent Alloys;Roy A;JOM.,2022

3. Machine learning of mechanical properties of steels;Xiong J;Sci. China Technol. Sci.,2020

4. Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy;Deng Z;Int J Miner Metall Mater.,2020

5. Machine learning of phases and mechanical properties in complex concentrated alloys;Xiong J;Journal of Materials Science & Technology.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3