Promotion effect suggested by hexadecanoic acid on the oxidative tolerance of S. cerevisiae during its co-culture with E. coli

Author:

Hou Shuxin1,Wang Shihui1,Zheng Caijuan1,Zhou Yu2,Yu Changyuan1,Li Hao2

Affiliation:

1. Beijing University of Chemical Technology

2. Jining Medical University

Abstract

Abstract Co-fermentation performed by Saccharomyces cerevisiae and Escherichia coli or other microbes has been widely used in industrial fermentation. Meanwhile, the co-cultured microbes might regulate each other’s metabolisms or cell behaviors including oxidative tolerance through secreting molecules. Here, results based on the co-culture system of S. cerevisiae and E. coli suggested the promoting effect of E. coli on the oxidative tolerance of S. cerevisiae cells. The co-cultured E. coli could enhance S. cerevisiae cell viability through improving its membrane stability and reducing the oxidized lipid level. Meanwhile, promoting effect of the co-cultured supernatant on the oxidative tolerance of S. cerevisiae illustrated by the supernatant substitution strategy suggested that secreted compounds contained in the co-cultured supernatant contributed to the higher oxidative tolerance of S. cerevisiae. The potential key regulatory metabolite (i.e., hexadecanoic acid) with high content difference between co-cultured supernatant and the pure-cultured S. cerevisiae supernatant was discovered by GC-MS-based metabolomics strategy. And exogenous addition of hexadecanoic acid did suggest its contribution to higher oxidative tolerance of S. cerevisiae. Results presented here would contribute to the understanding of the microbial interactions and provide the foundation for improving the efficiency of co-fermentation performed by S. cerevisiae and E. coli.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3