ResSAT: Enhancing Spatial Transcriptomics Prediction from H&E- Stained Histology Images with Interactive Spot Transformer

Author:

Liu Anqi1,Zhao Yue1,Shen Hui1,Ding Zhengming1,Deng Hong-Wen1

Affiliation:

1. Tulane University

Abstract

Abstract

Spatial transcriptomics (ST) revolutionizes RNA quantification with high spatial resolution. Hematoxylin and eosin (H&E) images, the gold standard in medical diagnosis, offer insights into tissue structure, correlating with gene expression patterns. Current methods for predicting spatial gene expression from H&E images often overlook spatial relationships. We introduce ResSAT (Residual networks - Self-Attention Transformer), a framework generating spatially resolved gene expression profiles from H&E images by capturing tissue structures and using a self-attention transformer to enhance prediction. Benchmarking on 10x Visium datasets, ResSAT significantly outperformed existing methods, promising reduced ST profiling costs and rapid acquisition of numerous profiles.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3