A Two-stage Shadow Removal Algorithm Based on Recurrent Attention Network

Author:

Zhang Jing1,Kong Weiwei1

Affiliation:

1. Xi’an University of Posts and Telecommunications

Abstract

Abstract

The presence of shadows in an image obscures some information, hindering the subsequent image-processing task. So correct identification of shadow regions will greatly upgrade the performance of shadow removal. Obviously, the more accurate the identification of shadow regions, the better the shadow removal performance will be. Based on this, this paper designs a two-stage shadow removal algorithm (TS-RAN) based on the recurrent attention network, including the shadow detection stage and shadow removal stage. Firstly, a single shadow image is fed into the shadow detection stage, which generates a rough attention map under the joint action of the recurrent attention network and luminance prediction module. Secondly, the results generated in the previous stage are transferred to the shadow removal stage and the luminance estimation module for fine shadow removal. In addition, we designed a residual estimation module to remove possible artifacts caused by shadow residuals. Experiments show that our method achieves significant performance on the LRSS, ISTD, and WSRD datasets.

Publisher

Research Square Platform LLC

Reference40 articles.

1. Bao, Q., Liu, Y., Gang, B., Yang, W., Liao, Q.: S 2 Net: Shadow Mask-Based Semantic-Aware Network for Single-Image Shadow Removal. IEEE Transactions on Consumer Electronics. 68, 3 (Aug. 2022), 209–220. (2022). https://doi.org/10.1109/TCE.2022.3188968

2. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple Baselines for Image Restoration. arXiv. https://doi.org/10.48550/arXiv.2204.04676. (2022)

3. Chen, Z., Long, C., Zhang, L., Xiao, C., Canada: CANet: A Context-Aware Network for Shadow Removal. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (Montreal, QC, Canada Oct. 2021), 4723–4732. (2021)

4. Towards Ghost-free Shadow Removal via Dual Hierarchical Aggregation Network and Shadow Matting GAN;Cun X,2019

5. Dey, R., Salem, F.M.: Gate-variants of Gated Recurrent Unit (GRU) neural networks. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) (Boston, MA, Aug. 2017), 1597–1600. (2017)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3