Separation of Microalgae from Bacterial Contaminants using Spiral Microchannel in the Presence of a Chemoattractant

Author:

Abdel-Mawgood Ahmed L.1ORCID,Ngum Leticia F.1,Matsushita Y.1,El-Mashtoly Samir F.1,El-Bab Ahmed M.R. Fath1

Affiliation:

1. Egypt-Japan University of Science and Technology

Abstract

Abstract Cell separation using microfluidics has become an effective method to isolate biological contaminants from bodily fluids and cell cultures, such as isolating bacteria contaminants from microalgae cultures and isolating bacteria contaminants from white blood cells. In this study, bacteria cell was used as a model contaminant in microalgae culture in a passive microfluidics device, which relies on hydrodynamic forces to demonstrate the separation of microalgae from bacteria contaminants in U and W-shaped cross-section spiral microchannel fabricated by defocusing CO2 laser ablation. At a flow rate of 0.7 ml/min in the presence of glycine as bacteria chemoattractant, the spiral microfluidics devices with U and W-shaped cross -sections were able to isolate microalgae (Desmodesmus sp) from bacteria (E. coli) with a high separation efficiency of 92% and 96% respectively. At the same flow rate in the absence of glycine, the separation efficiency of microalgae for U- and W-shaped cross sections were 91% and 96% respectively. It was found that the spiral microchannel device with a W-shaped cross-section with a barrier in the center of the channel showed significantly higher separation efficiency. Spiral microchannel chips with U- or W-shaped cross sections were easy to fabricate and exhibited high throughput. With these advantages, these devices could be widely applicable to other cell separation applications, such as separating circulating tumor cells from blood.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3