A Multi-scale Combined Prediction on Tourist Flow: Does Internet Big Data Matter?

Author:

Liu Jinpei1,Zhao Xiaoman1,Chen Yi1,Dai Yujie1

Affiliation:

1. Anhui University

Abstract

Abstract This article proposes a multi-scale combination prediction method for tourism traffic driven by internet big data. Firstly, process data on tourist traffic, Baidu index, and online reviews. Use Principal Component Analysis (PCA) to reduce the dimensionality of Baidu Index, and then use Snownlp to calculate the emotional value of each online comment. Secondly, a mixed multi-scale decomposition method is used to decompose tourism traffic and processed data, and sample entropy is used to reconstruct the decomposition results into high-frequency, low-frequency, and trend components. Thirdly, LSTM, BPNN, and SVR are used to predict high-frequency, low-frequency, and trend components, respectively, to obtain the predicted values under the three decomposition paths. The optimal weighted combination is used to obtain the final prediction result. Finally, the empirical analysis of tourism flow in Jiuzhaigou Valley,the result shows that the Internet big data can significantly improve the prediction effect of tourism flow.

Publisher

Research Square Platform LLC

Reference35 articles.

1. Daily tourism demand forecasting: the impact of complex seasonal patterns and holiday effects;Liu Y;Curr Issues Tourism,2022

2. Fuzzified grey prediction models using neural networks for tourism demand forecasting;Hu Y;Comput Appl Math,2020

3. Forecasting tourism demand with composite search index;Li X;Tour Manag,2017

4. The Baidu Index: Uses in predicting tourism flows –A case study of the Forbidden City;Huang X;Tour Manag,2017

5. Lu X, Ma C, Qiao Y (2021) Short-term demand forecasting for online car-hailing using ConvLSTM networks, vol 570. Physica A-statistical Mechanics and Its Applications, p 125838

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3