Evaluating Right and Left Eye Asymmetry in Monochromatic Fundus Images Using Convolutional Neural Networks

Author:

Park Shin Hyeong1,Kang Tae Seen2,Kim Min Jee1,Kim Bum Jun1

Affiliation:

1. Gyeongsang National University Changwon Hospital

2. Chungnam National University Sejong Hospital

Abstract

Abstract

Purpose Using convolutional neural networks (CNNs), we attempted to discriminate right and left fundus images of the retinal nerve fiber layer (RNFL), blue autofluorescence (BAF), and infrared reflectance (IR). Methods We prepared sets of 36,169 RNFL images, 4,695 BAF images, and 4,420 IR images. We evaluated each image set with three tests. Test 1 compared unmodified right and left fundus images. Test 2 compared right and flipped left images. Test 3 compared only left images that were divided randomly into two subsets. Results In Test 1, CNNs showed high accuracy for the RNFL, BAF, and IR sets (accuracy 100%, 99.74%, and 100%, respectively). In Test 2, the RNFL and IR sets showed high accuracy (97.93% and 95.84%, respectively), while the BAF set had relatively low accuracy (66.15%). In Test 3, the CNNs did not classify the images correctly. Conclusion We confirmed that CNNs could distinguish monochromatic images of the right and left fundus, even after horizontal flipping. This asymmetry could result in bias in CNN models. Therefore, asymmetry between the right and left fundus should be considered when developing a CNN model.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3