Abstract
Abstract
Agarwood essential oil (AEO) has gained attention from healthcare industries due to its numerous pharmacological properties. However, a comprehensive understanding of the chemical composition and its cytotoxic property is lacking. The objective of this study was to investigate the chemical profile as well as the cytotoxic concentration range of AEO derived from Aquilaria sinensis wood. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the AEO components. Results showed that sesquiterpenes and sesquiterpenoids constitute 95.85% of the AEO. Among the major compounds identified are allo-aromadendrene (13.04%), dihydro-eudesmol (8.81%), α-eudesmol (8.48%), bulnesol (7.63%), τ-cadinol (4.95%), dehydrofukinone (3.83%), valerenol (3.54%), cis-nerolidol (2.75%), agarospirol (2.72%), dehydrojinkoh-eremol (2.53%), selina-3,11-dien-9-al (2.36%), guaiol (2.12%) and caryophyllene oxide (2.0%). The presence of volatile quality marker compounds such as 10-epi-ϒ-eudesmol, aromadendrane, β-agarofuran, α-agarofuran, γ-eudesmol, agarospirol and guaiol, indicates that the extracted AEO is of premium grade. Interestingly, the AEO displayed moderate to high toxicity in brine shrimp lethality test (BLST). All studied tumor cell lines (MDA-MB-231, HepG2, B16F10) exhibited varying degrees of sensitivity to AEO, which resulted in time and dose-dependent reduction of cell proliferation. Our findings showed that AEO contains bioactive components that may be exploited in future studies for the development of anti-cancer therapeutics.
Publisher
Research Square Platform LLC