Remote Sensing Image Change Detection based on Cross Mixing Attention Network

Author:

WU Xiaosuo1,YANG Le1,WU Chaoyang1,GUO Cunge2,WANG Liling1,YAN Haowen1

Affiliation:

1. Lanzhou Jiaotong University

2. Lanzhou Institute of Technology

Abstract

Abstract Change detection is a crucial undertaking in the field of remote sensing. Current change detection methods tend to emphasize modelling difference features, ignoring the alignment error of dual-temporal images and the spatio-temporal relationship between dual-temporal images, which affects the recognition ability of features and makes it difficult to distinguish the real change region. Aiming at the above problems, this paper proposes a remote sensing image change detection method based on cross mixing attention network. The method employs the feature alignment module to obtain dual-temporal correction features to improve the classification effect of the boundary pixels of the target region. The spatio-temporal relationship of the dual-temporal phase images is better exploited by the cross mixing attention module to obtain attention maps at different scales to guide the up-sampling and enhancing the detection performance of target areas at different scales. Our introduced network demonstrates promising performance, as evidenced by extensive experimental results on both the LEVIR-CD dataset and SYSU-CD dataset.

Publisher

Research Square Platform LLC

Reference26 articles.

1. Review and prospect in change detection of mult-temporal remotesensing images[J];ZHANG Z X;Acta Geodaetica Cartogr. Sin.,2022

2. Land Cover Change Detection and Prediction in the Fafan Catchment of Ethiopia[J];Amare MT;J. Geovisualization Spat. Anal.,2023

3. DAUDT R C, LE SAUX B, BOULCH, A., et al.: Urban change detection for multispectral earth observation using convolutional neural networks[C]// IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. Ieee, 2115–2118 (2018)

4. GUPTA, R., HOSFELT, R., SAJEEV, S., et al.: xbd: A dataset for assessing building damage from satellite imagery[J/OL]. arXiv p-reprint arXiv: 1911.09296,2019(2019-11-21) [2023-5-19]. https://doi.org/10.48550.arXiv.1911.09296

5. Forest-CD: Forest Change Detection Network Based on VHR Images[J];JIANG J;IEEE Geosci. Remote Sens. Lett.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3