Drosophila UBE3A regulates satiety signaling through the Piezo mechanosensitive ion channel

Author:

Geier Benjamin1,Neely Logan1,Coronado Eli1,Reiter Lawrence T.1

Affiliation:

1. University of Tennessee Health Science Center

Abstract

Abstract Angelman syndrome (AS) is a rare neurogenetic disorder characterized by developmental delays, speech impairments, ataxic movements, and in some cases, hyperphagic feeding behavior. Loss of function mutations, loss of expression from the maternal allele or absence of maternal UBE3A result in AS. Recent studies have established a connection between UBE3A and the mechanosensitive ion channel PIEZO2, suggesting the potential role of UBE3A in the regulation of PIEZO channels. In this study, we investigated the role of Drosophila UBE3A (Dube3a) in Piezo associated hyperphagic feeding behavior. We developed a novel assay using green fluorescent protein (GFP) expressing yeast to quantify gut distention in flies with Piezo and Dube3a mutations. We confirmed that Dube3a15b loss of function flies displayed gut distention to almost identical levels as PiezoKO flies. Further analysis using deficiency (Df) lines encompassing the Dube3a locus provided proof for a role of Dube3a in satiety signaling. We also investigated endogenous Piezo expression across the fly midgut and tracheal system. Piezo protein could be detected in both neurons and trachea of the midgut. Overexpression of Dube3a driven by the Piezo promoter resulted in distinct tracheal remodeling within the midgut. These findings suggest that Dube3a plays a key role in the regulation of Piezo and that subsequent dysregulation of these ion channels may explain the hyperphagic behavior observed in 32% of cases of AS. Further investigation will be needed to identify the intermediate protein(s) interacting between the Dube3a ubiquitin ligase and Piezo channels, as Piezo does not appear to be a direct ubiquitin substrate for UBE3A in mice and humans.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3