Validation of Prediction Algorithm for Risk Estimation of Intracranial Aneurysm Development using Real-world Data

Author:

Kim Tackeun1,Choi Jisu2,Park Won-Ju3,Cho Seunghyeon3,Yoo Yeongjae3,Kim Hyeonjun3,Cho Juhee4,Joo Jin-Deok2,Oh Chang Wan1

Affiliation:

1. Seoul National University Bundang Hospital

2. TALOS Corp

3. Chonnam National University Medical School, Chonnam National University Hwasun Hospital

4. Samsung Advanced Institute for Health Sciences & Technology

Abstract

Abstract Background Intracranial aneurysm (IA) is difficult to detect, and most patients remain undiagnosed, as screening tests have potential risks and high costs. Thus, it is important to develop risk assessment system for efficient and safe screening strategy. We designed a clinical validation study to test the efficacy and validity of an artificial intelligence (AI) based risk prediction model for intracranial aneurysm in an actual clinical setting.Materials and Methods The study population comprised individuals who visited the Chonnam National University Hwasun Hospital Health Promotion Center in Korea for voluntary medical checkups between 2007 and 2019. All participants had no history of cerebrovascular disease and underwent brain CTA for screening purpose. Presence of IA was evaluated by two specialized radiologists. The risk score was calculated using the previously developed AI model, and 0 point represents the lowest risk and 100 point represents the highest risk. To compare the prevalence according to the risk, age-sex standardization using national database was performed.Result A study collected data from 5,942 health examinations, including brain CTA data, with participants ranging from 20 to 87 years old and a mean age of 52 years. The age-sex standardized prevalence of IA was 3.20%. The prevalence in each risk group was 0.18% (lowest risk, 0–19), 2.12% (lower risk, 20–39), 2.37% (mid-risk, 40–59), 4.00% (higher risk, 60–79), and 6.44% (highest risk, 80–100). The odds ratio between the lowest and highest risk groups was 38.50. The adjusted proportions of IA patients in the higher and highest risk groups were 26.7% and 44.5%, respectively. The median risk scores among IA patients and normal participants were 74 and 54, respectively. The optimal cut-off risk score was 60.5 with an area under the curve of 0.70.Conclusion We showed the clinical efficacy and validity of a prediction algorithm for risk estimation of IA using real-world data.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3