Predicting antimicrobial resistance using historical bacterial resistance data with machine learning algorithms

Author:

Urena Raquel1ORCID,Sabine Camiade2,Baalla Yasser3,Piarroux Martine4,HALFON Philippe5,Gaudart Jean6,Dufour Jean Charles6,Rebaudet Stanislas7

Affiliation:

1. Aix Marseille Univ

2. AlphaBio

3. Sesstim, Aix Marseille Univ

4. Centre d'épidémiologie et de santé publique des armées (CESPA)

5. Laboratoire Alphabio / Hôpital Européen

6. Sesstim, Aix Marseille Univ / BioSTIC, APHM

7. Sesstim, Aix Marseille Univ / Hôpital Européen

Abstract

Abstract Antibiotic resistance of bacterial pathogens is considered by the World Health Organization as a major threat to global health aggravated by the misuse of antibiotics. In clinical practice results of bacterial cultures and antibiograms can take several days. In the meantime, prescribing an empirical antimicrobial treatment constitutes a challenge in which the practitioner has to strike a balance between antibiotics spectrum and expected susceptibility probability. In this contribution, we report the development and testing of a machine-learning-based system that early predicts the antimicrobial susceptibility probability and provides explanations of the contribution of the different cofactors at 4 different stages prior to the antibiogram (sampling, direct examination, culture, and species identification stages). A comparative analysis of different state of the art machine learning and probabilistic methods was carried out using 7 years of historical bacterial resistance data from the Hôpital Européen Marseille, France. Our results suggest that dense neural network-based models and Bayesian models are suitable to early predict antibiotics susceptibility (average AUC 0.91 at the species identification stage) even for the less frequent situations.

Publisher

Research Square Platform LLC

Reference34 articles.

1. Antibiotic resistance. World Health Organization (WHO) https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (2018).

2. Considerations for Empiric Antimicrobial Therapy in Sepsis and Septic Shock in an Era of Antimicrobial Resistance;Strich JR;J. Infect. Dis.,2020

3. IDSA Practice Guidelines. Infectious Diseases Society of America (IDSA) https://www.idsociety.org/practiceguidelines#/name_na_str/ASC/0/+/.

4. Société de Pathologie Infectieuse de Langue Française (SPILF). Recommandations. Infectiologie.com https://www.infectiologie.com/fr/recommandations.html.

5. Personal clinical history predicts antibiotic resistance of urinary tract infections;Yelin I;Nat. Med.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Neural Network to Predict Antibiotic Resistance;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3