A Deep Learning Approach for Automatic 3D Segmentation of Hip Cartilage and Labrum from Direct Hip MR Arthrography

Author:

Meier Malin Kristin1,Helfenstein Ramon1,Boschung Adam2,Nanavati Andreas1,Ruckli Adrian C.3,Lerch Till D.1,Gerber Nicolas3,Jung Bernd1,Afacan Onur4,Tannast Moritz2,Siebenrock Klaus A.1,Steppacher Simon Damian1,Schmaranzer Florian1

Affiliation:

1. University Hospital of Bern

2. University of Fribourg

3. University of Bern

4. Boston Children's Hospital

Abstract

Abstract The objective was to use convolutional neural networks (CNNs) for automatic segmentation of hip cartilage and labrum based on 3D MRI. In this retrospective single-center study, CNNs were used to develop a fully automated segmentation model for hip cartilage and labrum from MRI. Direct hip MR arthrographies (01/2020-10/2021) were selected from 100 symptomatic patients. Institutional routine protocol included a 3D T1 mapping sequence, which was used for manual segmentation of hip cartilage and labrum. 80 hips were used for training and the remaining 20 for testing. Model performance was assessed with six evaluation metrics including Dice similarity coefficient (DSC). In addition, model performance was tested on an external dataset (40 patients) with a 3D T2-weighted sequence from a different institution. Inter-rater agreement of manual segmentation served as benchmark for automatic segmentation performance. 100 patients were included (mean age 30 ± 10 years, 64% female patients). Mean DSC for cartilage was 0.92 ± 0.02 (95% confidence interval [CI] 0.92–0.93) and 0.83 ± 0.04 (0.81–0.85) for labrum and comparable (p = 0.232 and 0.297, respectively) to inter-rater agreement of manual segmentation: DSC cartilage 0.93 ± 0.04 (0.92–0.95); DSC labrum 0.82 ± 0.05 (0.80–0.85). When tested on the external dataset, the DSC was 0.89 ± 0.02 (0.88–0.90) and 0.71 ± 0.04 (0.69–0.73) for cartilage and labrum, respectively. The presented deep learning approach accurately segments hip cartilage and labrum from 3D MRI sequences and can potentially be used in clinical practice to provide rapid and accurate 3D MRI models.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3