Simultaneous removal of Eriochrome Black T and chromate anions from aqueous solution using functionalized magnetic polymers

Author:

Alghamdi Huda M.1,Mohammad Rihab M.1,Elwakeel Khalid Z.1

Affiliation:

1. University of Jeddah

Abstract

Abstract

Textile wastewater containing heavy metal ions has become a severe environmental problem worldwide. The combined uptake of heavy metals and dyes from wastewater discharged by different sectors is a challenging concept. This study explores the use of hybrid adsorbent based on magnetic chitosan (MC) and magnetic glycidyl methacrylate (Mp(GMA)) in adsorption technology, for simultaneous removal of Eriochrome Black T (EBT) dye and chromate anions from their binary aqueous solution. The adsorbent material was functionalized by loading diethylenetriamine (DETA) or dithizone to improve their adsorption capacity (R-DETA or R-Dithizone). The physicochemical characteristics of the materials have been characterized by a wide variety of analytical techniques. Pseudo-second order and Langmuir adsorption isotherms were the best-fit models in the binary adsorption system. The co-presence of these anions in the binary solution increases the adsorption capacity of chromate and diminishes the EBT adsorption capacity of the investigated adsorbents (R-DETA and R-Dithizone). These anions in the binary solution reduce the adsorption capacity of both dye and chromate anions. The adsorption capacity at monolayer saturation capacities (Langmuir) of R-DETA in binary system were 0.782 and 4.11 mmol g− 1 towards EBT and chromate anions respectively, while R-Dithizone adsorbent recorded lower monolayer sorption capacity for EBT (0.490 mmol g− 1 ) and higher sorption capacity for chromate 5.93 mmol Cr(VI) g− 1 in the binary solution. The effects of competitive anions Cl, NO3, SO42−, and MnO4 on the adsorption of EBT and chromate anions in their binary mixture were examined. The good sorption ability of EBT and Cr(VI) anions against ionic interference supported their use in wastewater treatment applications. NaOH (0.5 M) proved the most effective for desorption from their binary mixture.

Publisher

Research Square Platform LLC

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3