The Kernel Inference on the Rayleigh Distribution based on the Complete Sample

Author:

Maswadah M.1ORCID

Affiliation:

1. Aswan University

Abstract

Abstract In this paper, we suggest a procedure based on the non-parametric kernel function as an alternative and reliable technique for estimation in life-testing models directly from the data without any prior assumptions about the underlying distribution parameters. The efficiency of this technique has been studied compared to Bayesian estimation based on both non-informative and informative conjugate priors, which indicates the robustness of the proposed method over the Bayesian approach. To clarify that, via Monte Carlo simulations, we derived the point and interval estimates of the parameter and the reliability of the Rayleigh distribution based on the two approaches. Finally, a numerical example is given to illustrate the densities and the inferential methods developed in this paper.

Publisher

Research Square Platform LLC

Reference15 articles.

1. On Bandwidth Variation in Kernel Estimates: A Square Root Law;Abramson I;Ann. Statist.,1982

2. Best linear unbiased estimator of the parameter of the Rayleigh distribution;Dyer DD;IEEE Transactions on Reliability,1973

3. Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap Monographs on statistics and Applied probability. No. 57, Chapman and Hall, London. 436 p.

4. Kernel density estimation using weighted data;Guillamon A;Commun. Statist. -Theory Meth.,1998

5. Guillamon, A. Navarro, J. and Ruiz, J.M. (1999). A note on kernel estimators for positive valued random variables. Sankhya: The Indian Journal of Statistics. Vol. (6) series (A) P. 276–281.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3