Machine-Learning Predictive Models For Dependency On Smartphones Based On Risk Factors

Author:

Giraldo-Jiménez Claudia F.1,Gaviria-Chavarro Javier1,Urrutia-Valdés Alexander1,Bedoya-Pérez José Fernando1,Sarria-Paja Milton Orlando1

Affiliation:

1. Universidad Santiago de Cali

Abstract

Abstract Background: Machine learning techniques allow highly accurate prediction of different tasks by measuring the event probabilities. This research proposes a prediction model for dependency on smartphones based on machine learning techniques. Methods: We performed an analytical observational study with a retrospective case–control approach; the different classification methods used were decision tree, random forest, logistic regression, and support vector machine. The sample demographic included 1228 students from a private university in Cali. The tests were 1) smartphone dependency assessment and 2) the Nordic musculoskeletal symptoms questionnaire. Results: It was found that some of the variables related to smartphone dependency are academic curriculum, school, marital status, socioeconomic status, rules, discussions, and discrimination. Conclusions: The support vector machine model evidences highest prediction precision for smartphone dependency, obtained through the stratified-k-fold cross-validation technique.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3