Use of a Novel Pressure Distribution System for Severely Ill Neonates: A Clinical Pilot Study Carried out by the PREPICare Consortium

Author:

Schlüer Anna-Barbara1,Müller Adrian Yves2,Fromme Nicolas Philip2,Camenzind Martin2,Riener Robert3,Rossi René Michel2,Aufdenblatten Barbara Brotschi4

Affiliation:

1. Zurich University of Applied Sciences

2. Swiss Federal Laboratories for Materials Science and Technology

3. ETH Zurich

4. University Children's Hospital Zurich

Abstract

Abstract Background: Pressure Injuries are not exclusively an adult phenomenon; various risk factors contribute to a high prevalence rate of 43% in the neonatal and pediatric intensive care population. Effective preventive measures in this population are limited. Methods: We performed a pilot study to analyze the distribution and localization of support surface interface pressures in neonates in a pediatric intensive care unit (PICU). The hypothesis was that pressure redistribution by a novel air mattress would reduce pressure peaks in critical neonates. The measurements were conducted in a 27-bed level III PICU between November and December 2020. This included measuring pressure distribution and pressure peaks for five neonates positioned on either a state-of-the-art foam mattress or a new prototype air mattress. Results: We confirmed that the pressure peaks were significantly reduced using the prototype air mattress, compared with the state-of-the-art foam mattress. The reduction of mean pressure values was 9%–29%, while the reduction of the highest 10% of pressure values was 23%–41%. Conclusions: The journey to an effective, optimal, and approved product for severely ill neonates to reduce Pressure Injuries is challenging. However, a crucial step was completed by this pilot study with the first pressure measurements in a real-world setting and the successful realization of a decrease in pressure peaks obtained using a prototype air mattress.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3