Creation of a replicable anatomic model of terrible triad of the elbow

Author:

BALTASSAT Antoine1,BALDAIRON Florent1,BERTHE Samuel2,BELLIER Alexandre3,BAHLOULI Nadia2,CLAVERT Philippe1

Affiliation:

1. Hôpitaux Universitaires de Strasbourg

2. Icube Strasbourg

3. Centre Hospitalier Universitaire de Grenoble

Abstract

Abstract

Background: Terrible triad of the elbow (TTE) is a complex dislocation associating radial head (RH) and coronoid process (CP) fractures. There is at present no reproducible anatomic model for TTE, and pathophysiology is unclear. The main aim of the present study was to create and validate an anatomic model of TTE. Secondary objectives were to assess breaking forces and relative forearm rotation with respect to the humerus before dislocation.Methods: An experimental comparative study was conducted on 5 fresh human specimens aged 87.4 ± 8.6 years, testing 10 upper limbs. After dissection conserving the medial and lateral ligaments, interosseous membrane and joint capsule, elbows were reproducibly positioned in maximal pronation and 15° flexion, for axial compression on a rapid (100 mm/min) or slow (10 mm/min) protocol, applied by randomization between the two elbows of a given cadaver, measuring breaking forces and relative forearm rotation with respect to the humerus before dislocation.Results: The rapid protocol reproduced 4 posterolateral and 1 divergent anteroposterior TTE, and the slow protocol 5 posterolateral TTE. Mean breaking forces were 3,126 ± 1,066 N for the lateral collateral ligament (LCL), 3,026 ± 1,308 N for the RH and 2,613 ± 1,120 N for the CP. Comparing mean breaking forces for all injured structures in a given elbow on the rapid protocol found a p-value of 0.033. Comparison of difference in breaking forces in the three structures (LCL, RH and CP) between the slow and rapid protocols found a mean difference of -4%. Mean relative forearm rotation with respect to the humerus before dislocation was 1.6 ± 1.2° in external rotation.Conclusions: We create and validate an anatomic model of TTE by exerting axial compression on an elbow in 15° flexion and maximal pronation at speeds of 100 and 10 mm/min.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3