Resonant and non-resonant impurity states related to quantum well subbands

Author:

Akimov Volodymyr1ORCID,Tulupenko Viktor2,Demediuk Roman3,Tiutiunnyk Anton4,Duque Carlos A.5,Morales Alvaro L.5,Laroze David4,Mora-Ramos Miguel Eduardo6

Affiliation:

1. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia

2. Physics department, Donbas State Engineering Academy, Kramatorsk, Ukraine

3. Physics department, Donbas State Pedagogical University, Sloviansk, Ukraine

4. Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile

5. Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia

6. Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, CP 62209, Cuernavaca, México

Abstract

Abstract

The energy positions and wave function shapes of ground and excited impurity states including resonant ones are studied using expansion method. The structures under study are GaAs/AlGaAs rectangular quantum wells with four different widths. In all cases impurity binding energy (with respect to related subband) has a maximum at or near the center of the well, decreases when approaching to the barrier and seemingly has a limit of 0 if impurity moves away from the well. If impurity is displaced from the well center, then non-resonant impurity states wave functions within the well move closer to impurity center while the wave functions of the resonant states below the second subband move away from it. The effect is more pronounced for the ground and first resonant states respectively for the wider wells and reaches maximum near the halfway from center to barrier.

Publisher

Springer Science and Business Media LLC

Reference18 articles.

1. Superlattice and Negative Differential Conductivity in Semiconductors;Esaki L;IBM J RES DEV,1970

2. Fox M, Ispasoiu R (2017) Quantum Wells, Superlattices, and Band-Gap Engineering. In: Kasap S, Capper P (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks, Springer, Cham

3. Dubowski JJ (2020) Bandgap Engineering of Quantum Semiconductor Microstructures. In: Sugioka K (ed) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham

4. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions;Ning CZ;Nat Rev Mater,2017

5. Dopants and Defects in Semiconductors, McCluskey MD, Eugene E, Haller ISBN 9780367781439, 372 Pages, Published March 31, 2021 by CRC Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3