Affiliation:
1. University of Bonn
2. University of Wisconsin-Milwaukee
Abstract
Abstract
Suberin, a complex biopolymer, forms a water and gas insoluble barrier that protects the inner tissues of plants. It is abundant in tree bark, particularly in the cork oak Quercus suber. Anatomically, fossil bark has been described since the Devonian. However, its distinctive constituent suberin has not yet been reported from the fossil record. Here we present unambiguous chemical evidence for intact suberin from the outer layer of a middle Eocene monkeyhair tree from Geiseltal, eastern Germany. High-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) was employed to detect constituents of suberin in the outer layer of the fossil monkeyhair tree, which confirms previous morphological interpretation of this tissue as bark, and chemically differentiates this layer from the two tissues of the inner layer. Notably, this is the first study with compelling chemical evidence for suberin in fossil bark. Fluorescence microspectroscopy additionally supported the presence of suberin. Fossilization conditions in the Eocene Geiseltal deposit were likely mild, with low moisture and temperatures, contributing to the remarkable preservation of bark and inner laticifer mats of the monkeyhair trees growing there 45 million years ago.
Publisher
Research Square Platform LLC