Mechanistic patterns and clinical implications of oncogenic tyrosine kinase fusions in human cancers

Author:

Chiarle Roberto1ORCID,Cheong Taek-Chin2ORCID,Jang Ahram1,Wang Qi1,Leonardi Giulia3,Ricciuti Biagio4,Alessi Joao4,Federico Alessandro Di5,Awad Mark6,Lehtinen Maria7,Harris Marian1ORCID

Affiliation:

1. Boston Children's Hospital and Harvard Medical School

2. Harvard Medical School

3. Boston Children Hospital

4. Dana-Farber Cancer Institute

5. Dana-Farber Cancer Institute, Harvard Medical School

6. Dana Farber Cancer Institute

7. Boston Children's Hospital

Abstract

Abstract Tyrosine kinase (TK) fusions are frequently found in cancers, either as initiating events or as a mechanism of resistance to targeted therapy. Partner genes and exons in most TK fusions are typical and recurrent, but the underlying mechanisms and clinical implications of these patterns are poorly understood. Here, we investigated structures of > 8,000 kinase fusions and explore their generative mechanisms by applying newly developed experimental framework integrating high-throughput genome-wide gene fusion sequencing and clonal selection called Functionally Active Chromosomal Translocation Sequencing (FACTS). We discovered that typical oncogenic TK fusions recurrently seen in patients are selected from large pools of chromosomal rearrangements spontaneously occurring in cells based on two major determinants: active transcription of the fusion partner genes and protein stability. In contrast, atypical TK fusions that are rarely seen in patients showed reduced protein stability, decreased downstream oncogenic signaling, and were less responsive to inhibition. Consistently, patients with atypical TK fusions were associated with a reduced response to TKI therapies, as well as a shorter progression-free survival (PFS) and overall survival (OS) compared to patients with typical TK fusions. These findings highlight the principles of oncogenic TK fusion formation and their selection in cancers, with clinical implications for guiding targeted therapy.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3