Jellyfish detritus supports niche partitioning and metabolic interactions among marine bacteria

Author:

Tinta Tinkara1,Zhao Zihao2,Bayer Barbara3,Herndl Gerhard J.2

Affiliation:

1. National Institute of Biology, Marine Biology Station Piran, Slovenia

2. University of Vienna, Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit

3. University of Vienna, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science

Abstract

Abstract Background Jellyfish blooms represent a significant but largely overlooked source of labile organic matter (jelly-OM) in the ocean, characterized by a high protein content. Decaying jellyfish are important vehicles for carbon export to the ocean’s interior. To accurately incorporate them into biogeochemical models, the interactions between microbes and jelly-OM have yet to be fully characterized. We conducted jelly-OM enrichment experiments to simulate the scenario experienced by the coastal microbiome after the decay of a jellyfish bloom. We combined metagenomics, endo- and exo-metaproteomic approaches to obtain a mechanistic understanding on the metabolic network operated by the jelly-OM degrading bacterial consortium. Results Our analysis revealed that OM released during the decay of jellyfish blooms triggers a rapid shuffling of the taxonomic and functional profile of the bacterial community, resulting in a significant enrichment of protein/amino-acid catabolism-related enzymes in the jelly-OM degrading community dominated by Pseudoalteromonadaceae, Alteromonadaceae and Vibrionaceae, compared to unamended control treatments. In accordance with the proteinaceous character of jelly-OM, Pseudoalteromonadaceae synthesized and excreted enzymes associated with proteolysis, while Alteromonadaceae contributed to extracellular hydrolysis of complex carbohydrates and organophosphorus compounds. In contrast, Vibrionaceae synthesized transporter proteins for peptides, amino acids and carbohydrates, exhibiting a cheater-type lifestyle. In the late stage of jelly-OM degradation, Rhodobacteraceae and Alteromonadaceae became dominant, growing on jelly-OM left-overs or bacterial debris, potentially contributing to the accumulation of dissolved organic nitrogen compounds and inorganic nutrients, following the decay of jellyfish blooms. Conclusions Our findings indicate that specific chemical and metabolic fingerprints associated with decaying jellyfish blooms are substantially different to those associated with decaying phytoplankton blooms, potentially altering the functioning and biogeochemistry of marine systems. In particular, the enrichment in extracellular collagenolytic proteases associated with the decay of jellyfish blooms represents an important aspect, with possible implications for marine ecosystem services as virulence factors in human and marine organisms’ disease. Our study also provides novel insights into niche partitioning and metabolic interactions among key jelly-OM degraders operating a complex metabolic network in a temporal cascade of biochemical reactions to degrade pulses of jellyfish-bloom specific compounds.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3