Synthesis, structure, hirshfeld surface analysis, non-covalent interaction, and in silico studies of 4-hydroxy-1-[(4-nitrophenyl)sulphonyl]pyrrolidine-2-carboxyllic acid

Author:

Ugwu David Izuchukwu1,Eze Florence Uchenna1,Ezeorah Chigozie Julius1,Rhyman Lydia2,Ramasami Ponnadurai2,Tania Groutso3,Eze Cosmas Chinweike1,Uzoewulu Chiamaka Peace1,Ogboo Blessing Chinweotito1,Okpareke Obinna Chibueze1

Affiliation:

1. University of Nigeria

2. University of Mauritius

3. University of Auckland

Abstract

Abstract The new compound 4-hydroxy-1-[(4-nitrophenyl)sulphonyl]pyrrolidine-2-carboxyllic acid was obtained by the reaction of 4-hydroxyproline with 4-nitrobenzenesulphonyl chloride. The compound was characterized using X-ray diffraction studies. Spectroscopic methods including NMR, FTIR, ES-MS, and UV were employed for further structural analysis of the synthesized compound. The title compound was found to have crystallized in an orthorhombic crystal system with space group P212121. The S1-N1 bond length of 1.628 (2) Å was a strong indication of the formation of the title compound. The absence of characteristic downfield 1H NMR peak of pyrrolidine ring and the presence of S-N stretching vibration at 857.82 cm− 1 on the FTIR are strong indications for the formation of the sulfonamide. The experimental study was complemented with computations at the B3LYP/6-311G++(d,p) level of theory to gain more understanding of interactions in the compound at the molecular level. Noncovalent interaction, Hirsfeld surface analysis and interaction energy calculations were employed in the analysis of the supramolecular architecture of the compound. Predicted ADMET parameters, awarded suitable bioavailability credentials, while the molecular docking study indicated that the compound enchants promising inhibition prospects against dihydropteroate synthase, DNA topoisomerase, and SARS-CoV-2 spike.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3