The exploration of a new technology: preservation of immovable silicate cultural relics against salt efflorescence by directional induction of water and salt migration

Author:

Li Qiang1,Gao Ge1,Yang Longkang1,Huang Xiao1,Luo Hongjie1

Affiliation:

1. Shanghai University

Abstract

Abstract Salt efflorescence is one of the critical problems for the preservation of immovable silicate relics. Salt efflorescence mainly comes from continuous cycles of crystallization/dissolution or hydration/dehydration of salts in confined pores in silicate relics. Many protocols have been developed in attempts to alleviate possible salt damages with minor success because of endless water and salt feed from underground. In this study, we propose and design a novel technique for salt damage prevention and protection of immovable relics. Materials with higher water-absorbing ability than matrix are applied to control the water and salt migration direction in simulated sand samples. The distribution of moisture content on the surface of sand is followed by hyperspectral imaging. It appears that water and salt molecules will preferentially transport towards positions containing higher water-absorbing material. Both organic and inorganic high water-absorbing materials show effective in controlling the water and salt migration direction, which provides a new approach for the prevention and protection of salt efflorescence in silicate cultural relics.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3