Absorption peak decomposition of an inhomogeneous nanoparticle ensemble of hexagonal tungsten bronzes using the reduced Mie scattering integration method

Author:

Machida Keisuke1,Adachi Kenji1

Affiliation:

1. Sumitomo Metal Mining Co., Ltd

Abstract

Abstract Recent optical analyses of cesium-doped hexagonal tungsten bronze have accurately replicated the absorption peak and identified both plasmonic and polaronic absorptions in the near-infrared region, which have been exploited in various technological applications. However, the absorption peaks of tungsten oxides and bronzes have not generally been reproduced well, including those of the homologous potassium- and rubidium-doped hexagonal tungsten bronzes that lacked evidence of polaronic subpeaks. The present study reports a modified and simplified Mie scattering integration (MSI) method which incorporates the ensemble inhomogeneity effect and allows precise peak decomposition and determination of the physical parameters of nanoparticles. The decomposed peaks were interpreted in terms of electronic structures, screening effect, and modified dielectric functions. The analysis revealed that the plasma frequencies, polaron energies, and the number of oxygen vacancies decrease in the dopant order Cs → Rb → K. The coexistence of plasmonic and polaronic excitations was confirmed for all the alkali-doped hexagonal tungsten bronzes.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3