Fabrication and Properties of Hydrophobically Modified ZnO-SiO 2 Nanocomposite with Polysiloxane

Author:

lonbani Saba Necooei1,Montazeri Arash1,Malakdar Sharbanoo1

Affiliation:

1. University of Guilan

Abstract

Abstract Studies on the wettability properties of solid surfaces are very important in any of the scientific and industrial fields. The most common principle for a superhydrophobic self-cleaning surface is the lotus effect induced by surface roughness. In this study, silicate compounds have been used to produce hydrophobic surfaces. In this way, firstly, SiO2-ZnO nanocomposite was produced, and then vinyl trimethoxy silane was used to increase the water contact angle (WCA). The structure and morphology of nanocomposites were investigated by infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), scanning electron microscopy (SEM) and energy-dispersion spectrometer (EDS) analyses. The thermal stability of nanocomposite coatings was examined by thermogravimetric analysis (TGA). In order to investigate the wetting properties, the surface roughness was measured using an atomic force microscope (AFM), where the subsurface roughness average was obtained at 37.79 nm. The WCA of the coated surfaces with ZnO-SiO2 and ZnO-SiO2 @Polysiloxane nanocomposites were measured at 69 and 160°, respectively, indicating the surface superhydrophobic properties of ZnO-SiO2 @Polysiloxane nanocomposites. Finally, superhydrophobic properties of nanocomposites were investigated by the Cassie-Baxter model. The value of the f2 parameter in the model was estimated at 0.9556. This means that air occupies about 95.56% of the contact area between the water droplet and nano-coating, which is responsible for the superhydrophobic property of the surface.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3