Affiliation:
1. Faculty of Science, University of El Qued
2. Tanta University Faculty of Engineering
3. Faculty of Exact Science, University of El Qued
Abstract
Abstract
The present comprehensive study aims to solve the problem of declining drinking water productivity from solar distillers. The hemispherical distillers are characterized by having the large condensing and receiving surface area, so the utilization of basin materials with high thermal conductivity and reflective mirrors are very effective to enhance a cumulative production of hemispherical distillation. To get the optimal basin materials with the reflective mirror that achieves the highest hemispherical distiller’s performance, three high thermal conductivity basin materials (steel, zinc, and copper) with reflective mirror were tested at the same conditions and compared to reference hemispherical unit. To realize this idea, four distillers was fabricated and tested at a same climate condition namely: Hemispherical solar Distiller with Black Silicone Walls (HSD-BSW), Hemispherical Solar Distiller with Steel Plate and Reflective Mirror (HSD-SPRM), Hemispherical Solar Distiller with Zinc Plate and Reflective Mirror (HSD-ZPRM), and Hemispherical Solar Distiller with Copper Plate and Reflective Mirror (HSD-CPRM). The experimental results presented that the utilization of copper basin materials and reflective mirror (HSD-CPRM) represents the good option to achieve the highest performance of hemispherical distiller, use the copper basin materials and reflective mirror (HSD-CPRM) gives a cumulative production reached 9500 mL/m2 day with improvement of 104.3% compared to reference hemispherical distiller (HSD-BSW). Also, use the copper basin materials and reflective mirror (HSD-CPRM) improves the daily thermal efficiency and exergy efficiency by 102.4% and 194.9%, respectively compared to HSD-BSW. The comprehensive economic analysis concluded that the use of copper basin materials and reflective mirrors (HSD-CPRM) reduced the distillate water cost per liter by 44.1% compared to HSD-BSW.
Publisher
Research Square Platform LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献