Convolutional neural network quantification of Gleason pattern 4 and association with biochemical recurrence in intermediate grade prostate tumors

Author:

Chen Yalei1,Loveless Ian2,Nakai Tiffany1,Newaz Rehnuma1,Abdollah Firas1,Rogers Craig2,Hassan Oudai2,Chitale Dhananjay2ORCID,Arora Kanika3,Williamson Sean3ORCID,Gupta Nilesh,Rybicki Benjamin2,Sadasivan Sudha2,Levin Albert1ORCID

Affiliation:

1. Henry Ford Health

2. Henry Ford Health System

3. Cleveland Clinic

Abstract

Abstract Differential classification of prostate cancer (CaP) grade group (GG) 2 and 3 tumors remains challenging, likely due to the subjective quantification of percentage of Gleason pattern 4 (%GP4). Artificial intelligence assessment of %GP4 may improve its accuracy and reproducibility and provide information for prognosis prediction. To investigate this potential, a convolutional neural network (CNN) model was trained to objectively identify and quantify Gleason pattern (GP) 3 and 4 areas, estimate %GP4, and assess whether CNN-assessed %GP4 is associated with biochemical recurrence (BCR) risk in intermediate risk GG 2 and 3 tumors. The study was conducted in a radical prostatectomy cohort (1999–2012) of African American men from the Henry Ford Health System (Detroit, Michigan). A CNN model that could discriminate four tissue types (stroma, benign glands, GP3 glands, and GP4 glands) was developed using histopathologic images containing GG 1 (n = 45) and 4 (n = 20) tumor foci. The CNN model was applied to GG 2 (n = 153) and 3 (n = 62) for %GP4 estimation, and Cox proportional hazard modeling was used to assess the association of %GP4 and BCR, accounting for other clinicopathologic features including GG. The CNN model achieved an overall accuracy of 86% in distinguishing the four tissue types. Further, CNN-assessed %GP4 was significantly higher in GG 3 compared with GG 2 tumors (p = 7.2*10− 11). %GP4 was associated with an increased risk of BCR (adjusted HR = 1.09 per 10% increase in %GP4, p = 0.010) in GG 2 and 3 tumors. Within GG 2 tumors specifically, %GP4 was more strongly associated with BCR (adjusted HR = 1.12, p = 0.006). Our findings demonstrate the feasibility of CNN-assessed %GP4 estimation, which is associated with BCR risk. This objective approach could be added to the standard pathological assessment for patients with GG 2 and 3 tumors and act as a surrogate for specialist genitourinary pathologist evaluation when such consultation is not available.

Publisher

Research Square Platform LLC

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3