Affiliation:
1. Department of Neurology, The First Affiliated Hospital of Guangxi Medical University
2. Department of Rehabilitation, Xichang People's Hospital
Abstract
Abstract
To identify the regulatory network of microRNAs (miRNAs) and mRNAs to clarify molecular mechanisms in stroke. Four miRNA datasets and two mRNA datasets of stroke were downloaded from the GEO database. R-Studio was utilized to analyze differentially expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) in the blood of stroke and control patients. FunRich software was utilized to conduct GO and biological pathway analysis on DEmiRNAs, and to search for transcription factors (TFs) of DEmiRNAs. Subsequently, we used miRDB, miRTarBase, and TargetScan to identify DEmiRNAs target genes and intersected with DEmRNAs to find common target genes. The miRNA-mRNA regulatory network of common target genes was constructed by using the Cytoscape. The biological and functional roles of target genes in the regulatory network were predicted using GO and KEGG pathway analyses. 464 DEmiRNAs and 329 DEmRNAs were screened, respectively. The top ten TFs (SP1, SP4, EGR1, TCF3, NKX6-1, ZFP161, RREB1, MEF2A, NFIC, POU2F1) were visualized. 16747 target genes of DEmiRNAs were predicted. Target genes were intersected with DEmRNAs, 107 common target genes and 162 DEmiRNAs regulating these common genes were obtained, and then a regulatory network was constructed. Target genes of the regulatory network were primarily enriched in VEGF signaling pathway, lipid and atherosclerosis, T cell receptor signaling pathway. This study found that VEGF signaling pathway, lipid and atherosclerosis, T cell receptor signaling pathway are implicated in the biological process of stroke by constructing the regulatory network of miRNAs-mRNAs, which may have guide significance for the pathogenesis and treatment of stroke.
Publisher
Research Square Platform LLC