Multimaterial Fiber is a Physical Simulator of a Capillary Instability

Author:

de Lima Camila Faccini1,Wang Fan2,Johnson Steven2,Gumennik Alexander3

Affiliation:

1. Indiana University Bloomington

2. Massachusetts Institute of Technology

3. Indiana University

Abstract

Abstract The capillary breakup of cores is an exclusive approach to fabricating fiber-integrated optoelectronics and photonics. A physical understanding of this fluid-dynamic process is necessary for yielding the desired solid-state fiber-embedded multimaterial architectures by design rather than by exploratory search. We discover that the nonlinearly complex and, at times, even chaotic capillary breakup of multimaterial fiber cores becomes predictable when the fiber is exposed to the spatiotemporal temperature profile, imposing a viscosity modulation comparable to the breakup wavelength. The profile acts as a notch filter, allowing only that single wavelength out of the continuous spectrum to develop predictably, following Euler-Lagrange dynamics. We argue that this understanding not only enables designing the outcomes of the breakup necessary for turning it into a technology for materializing fiber-embedded functional systems but positions a multimaterial fiber as a universal physical simulator of capillary instability in viscous threads.

Publisher

Research Square Platform LLC

Reference43 articles.

1. Tao, G., Abouraddy, A. F., Stolyarov, A. M. & Fink, Y. Multimaterial Fibers. in Lab-on-Fiber Technology vol. 56 1–27 (2015).

2. Yan, W. et al. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today vol. 35 168–194 Preprint at https://doi.org/10.1016/j.mattod.2019.11.006 (2020).

3. Fiber Sensing: Medical fiber-optic sensors offer haptics, 3D shape sensing, and pressure sensing | Laser Focus World. https://www.laserfocusworld.com/fiber-optics/article/16546889/fiber-sensing-medical-fiberoptic-sensors-offer-haptics-3d-shape-sensing-and-pressure-sensing.

4. Multimaterial Photodetecting Fibers: a Geometric and Structural Study;Sorin F;Advanced Materials,2007

5. All-in-Fiber Chemical Sensing;Gumennik A;Advanced Materials,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3