Effect of NaClO and ClO2 on the bacterial properties in a reclaimed water distribution system: efficiency and mechanisms

Author:

Jia Shichao1,Tian Yimei1,Song Yarong1,Zhang Haiya2ORCID,Kang Mengxin1,Guo Hao1,Chen Haolin1

Affiliation:

1. Tianjin University

2. Chinese Research Academy of Environmental Sciences

Abstract

Abstract Extensively application of reclaimed water alleviated water scarcity obviously. While, bacterial proliferation in reclaimed water distribution systems (RWDSs) poses a threat to water safety. Disinfection is the most common method to control microbial growth. The present study investigated the efficiency and mechanisms of two widely used disinfectants: sodium hypochlorite (NaClO) and chlorine dioxide (ClO2) on the bacterial community and cell integrity in effluents of RWDSs through high-throughput sequencing (Hiseq) and flow cytometry respectively. Results showed that a low disinfectant dose (1 mg/L) did not change the bacterial community basically, while an intermediate disinfectant dose (2 mg/L) reduced the biodiversity significantly. However, some tolerant species survived and multiplied in high disinfectant environments (4 mg/L). Additionally, the effect of disinfection on bacterial properties varied between effluents and biofilm, with changes in the abundance, bacterial community, and biodiversity. Results of flow cytometry showed that NaClO disturbed live bacterial cells rapidly, while ClO2 caused greater damage, stripping the bacterial membrane and exposing the cytoplasm. This research will provide valuable information for assessing the disinfection efficiency, biological stability control, and microbial risk management of reclaimed water supply systems.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3