Reversible electric-field-induced phase transition in Ca-modified NaNbO3 perovskites for energy storage applications

Author:

Aso Seiyu1,Matsuo Hiroki1,Noguchi Yuji1

Affiliation:

1. Kumamoto University

Abstract

Abstract Sodium niobate (NaNbO3) is a potential material for lead-free dielectric ceramic capacitors for energy storage applications because of its antipolar ordering. In principle, a reversible phase transition between antiferroelectric (AFE) and ferroelectric (FE) phases can be induced by an application of electric field (E) and provides a large recoverable energy. However, an irreversible phase transition from the AFE to the FE phase usually takes place and an AFE-derived polarization feature, a double polarization (P)-E hysteresis loop, does not appear. In this study, we investigate the impact of chemically induced hydrostatic pressure (pchem) on the phase stability and polarization characteristics of NaNbO3-based ceramics. We reveal that the cell volume of Ca-modified NaNbO3 [(CaxNa1−2xVx)NbO3], where V is A-site vacancy, decreases with increasing x by a positive pchem. Structural analysis using micro-X-ray diffraction measurements shows that a reversible AFE–FE phase transition leads to a double P-E hysteresis loop for the sample with x = 0.10. DFT calculations support that a positive pchem stabilizes the AFE phase even after the electrical poling and provides the reversible phase transition. Our study demonstrates that an application of positive pchem is effective in delivering the double P-E loop in the NaNbO3 system for energy storage applications.

Publisher

Research Square Platform LLC

Reference60 articles.

1. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook;Palneedi H;Adv. Funct. Mater.,2018

2. Energy Storage in Ceramic Dielectrics;Love GR;J. Am. Ceram. Soc.,1990

3. Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances;Yao Z;Adv. Mater.,2017

4. Perovskite lead-free dielectrics for energy storage applications;Yang L;Prog. Mater. Sci.,2019

5. Realizing high-performance capacitive energy storage in lead-free relaxor ferroelectrics via synergistic effect design;Ding Y;J. Eur. Ceram. Soc.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3