Fluorescein diacetate hydrolytic activity as a sensitive tool to quantify nitrogen/sulfur gene content in urban river sediments in China

Author:

Zhang Chao1,Li Meng1,Sun Jingmei1ORCID,Huang Jianjun1,Chang Suyun1

Affiliation:

1. Tianjin University

Abstract

Abstract The relative abundance of functional genes used to quantify the abundance of functional genes in communities is controversial. Quantitative PCR (qPCR) technology offers a powerful tool for quantifying functional gene abundance. However, humic substances can inhibit qPCR in sediment/soil samples. Therefore, finding a convenient and effective quantitative analysis method for sediment/soil samples is necessary. The functional genes and physicochemical properties in sediments with different-level pollutions were analyzed in this study. Correlations between physicochemical properties and the relative abundance of functional genes were used to test whether relative abundance in gene prediction quantifies the abundance of functional genes. The abundance of functional genes could be corrected by multiplying the fluorescein diacetate (FDA) hydrolytic rates by the relative abundance of functional genes since the FDA assay has been widely used as a rapid and sensitive method for quantifying microbial activity in sediments. Redundancy analysis showed significant interrelations between the functional genes and the physicochemical properties of sediments. The relative abundance of functional genes is unreliable for quantifying the abundance of functional genes because of the weak correlation (R < 0.5, P < 0.05) between different pollutants and the relative abundance of functional genes. However, a significant positive correlation between concentrations of different pollutants and the activities of associated enzymes was obtained (R > 0.933, P < 0.05), which revealed that the abundance of functional genes could be reliably quantified by the relative abundance and FDA hydrolytic rate. This study proposed an alternative method besides qPCR to quantify the absolute abundance of functional genes, which overcomes the problem of humic interference in the quantitative analysis of sediment/soil samples.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3