Does the strategic use of Big Data alter outcomes in degenerative spine surgery? A study protocol for a multicenter clinical trial testing the Swespine Dialogue Support

Author:

Enger Eric Brisby1,Valentin-Askman Ludvig2,Hägg Olle3,Fritzell Peter4,Parai Catharina5

Affiliation:

1. Varberg Hospital

2. Alingsås hospital

3. Spine Center Göteborg

4. Region Jönköpings län

5. Sahlgrenska University Hospital

Abstract

Abstract Background Patients surgically treated for lumbar spinal stenosis or cervical radiculopathy report improvement in approximately two out of three cases. Advancements in Machine Learning and the utility of large datasets have enabled the development of prognostic prediction models within spine surgery. This trial investigates if the use of the postoperative outcome prediction model, the Dialogue Support, can alter patient-reported outcome and satisfaction compared to current practice. Methods This is a prospective, multicenter clinical trial. Patients referred to a spine clinic with cervical radiculopathy or lumbar spinal stenosis will be screened for eligibility. Participants will be assessed at baseline upon recruitment and at 12 months follow-up. The Dialogue Support will be used on all participants, and they will thereafter be placed into either a surgical or a non-surgical treatment arm, depending on the decision made between patient and surgeon. The surgical treatment group will be studied separately based on diagnosis of either cervical radiculopathy or lumbar spinal stenosis. Both the surgical and the non-surgical group will be compared to a retrospective matched control group retrieved from the Swespine register, on which the Dialogue Support has not been used. The primary outcome measure is global assessment regarding leg/arm pain in the surgical treatment group. Secondary outcome measures include patient satisfaction, Oswestry Disability Index (ODI), EQ-5D, and Numeric Rating Scales (NRS) for pain. In the non-surgical treatment group primary outcome measures are EQ-5D and mortality, as part of a selection bias analysis. Discussion The findings of this study may provide evidence on whether the use of an advanced digital decision tool can alter patient-reported outcomes after surgery. Trial registration The trial was retrospectively registered at ClinicalTrials.gov on April 17th, 2023, NCT05817747.

Publisher

Research Square Platform LLC

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3