Plugged-in Electric Vehicle-Assisted Demand Response Strategy for Residential Energy Management

Author:

Alfaverh Khaldoon1,Alfaverh Fayiz2,Szamel Laszlo1

Affiliation:

1. Budapest University of Technology and Economics

2. University of Hertfordshire

Abstract

Abstract Demand response (DR) management systems are a potentially growing market due to their ability to maximize energy savings by allowing customers to manage their energy consumption at times of peak demand in response to financial incentives from the electricity supplier. Successful execution of a demand response program requires an effective management system where the home energy management system (HEMS) is a promising solution nowadays. HEMS is developed to manage energy use in households and to conduct the management of energy supply, either from the grid or the alternative energy sources like solar or wind power plants. With the increase of vehicle electrification, in order to achieve a more reliable and efficient smart grid (SG), cooperation between electric vehicles (EVs) and residential systems is required. This cooperation could involve not only vehicle to grid (V2G) operation but a vehicle to home (V2H) too. V2H operation is used to transfer the power and relevant data between EVs and residential systems. This paper provides an efficient HEMS enhanced by smart scheduling and an optimally designed charging and discharging strategy for plugged-in electric vehicles (PEVs). The proposed design uses a fuzzy logic controller (FLC) for smart scheduling and to take the charging (from the grid)/discharging (supply the household appliances) decision without compromising the driving needs. Simulations are presented to demonstrate how the proposed strategies can help to reduce electricity costs by 19.28% and 14.27% with 30% and 80% state of charge (SOC) of the PEV respectively compared to the case where G2V operation only used along with the photovoltaic (PV) production, improve energy utilization by smoothing the energy consumption profile and satisfy the user’s needs by ensuring enough EV battery SOC for each planned trip.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3