Affiliation:
1. Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University
2. Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University
Abstract
Abstract
The lipopeptides produced by Bacillus subtilis have anti-cancer potential. We had previously identified a secondary metabolite of B. subtilis strain Z15 (BS-Z15), which has an operon that regulates lipopeptide synthesis, and also demonstrated that the fermentation products of this strain exerted antioxidant and pro-immune effects. The purpose of this study was to investigate in vitro and in vivo the anticancer effects of BS-Z15 secondary metabolites (BS-Z15 SMs) on hepatocellular carcinoma (HCC) cells. BS-Z15 SMs significantly inhibited H22 cell-derived murine xenograft tumor growth without any systemic toxicity. In addition, BS-Z15 SMs decreased the viability of H22 cells and BEL-7404 cells in vitro with respective IC50 values of 33.83µg/mL and 27.26 µg/mL. Consistent with this, BS-Z15 SMs induced apoptosis and G0/G1 phase arrest in the BEL-7404 cells, and the mitochondrial membrane potential was also significantly reduced in a dose-dependent manner. Mechanistically, BS-Z15 SMs upregulated the pro-apoptotic p53, Bax, cytochrome C and cleaved-caspase-3/9 proteins, and downregulated the anti-apoptotic Bcl-2.These findings suggest that the induction of apoptosis in HCC cells by BS-Z15 SMs may be related to the mitochondrial pathway. Thus, the secondary metabolites of B. subtilis strain Z15 are promising to become new anti-cancer drugs for the clinical treatment of liver cancer.
Publisher
Research Square Platform LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献