Identification of key genes and immune characteristics of SASP in acute ischemic stroke

Author:

Cai Hanlu1,Zhang Huixue1,Xin Guanghao1,Peng Shanshan1,Xu Fanfan1,Zhang Nan1,Li Yichen1,Zhang Wei1,Li Ying1,Ren Yingjie1,Wang Yu1,Kong Xiaotong1,Wang Lihua1,Liu Zhaojun1

Affiliation:

1. Harbin Medical University

Abstract

Abstract

Background: The senescence-associated secretory phenotype (SASP) is a key mechanism through which senescent cardiovascular cells contribute to plaque formation, instability, and vascular remodeling. However, the correlation between SASP and acute ischemic stroke (AIS), particularly its immune inflammation characteristics, remains underexplored and requires further elucidation. Methods We downloaded the AIS database from the GEO database and obtained SASP genes from the SASP Atlas and related literature. Using two machine learning algorithms, we identified five hub genes. Unsupervised cluster analysis was performed on patients with AIS and DEGs separately to identify distinct gene clusters, which were then analyzed for immune characteristics. We then explored the related biological functions and immune properties of the hub genes by using various algorithms (GSEA, GSVA and CIBERSORT). Principal component analysis (PCA) was used to generate SASP-related gene scores based on the expression of hub genes. A logistic regression algorithm was employed to establish an AIS classification diagnosis model based on the hub genes. Peripheral venous blood was collected for validation using real-time quantitative PCR (RT-qPCR), and hub protein expression was assessed using immunohistochemistry. Results We identified five hub genes using two machine learning algorithms and validated them with RT-qPCR. Gene cluster analysis revealed two distinct clusters, SASP-related gene cluster B and differentially expressed gene cluster B, indicating that the acute AIS samples had more severe immune inflammatory response and a higher risk of disease deterioration. We constructed a gene-drug regulatory network for PIN1and established an AIS diagnostic model and nomogram using a logistic regression algorithm. Immunohistochemical analysis of thrombi from patients with AIS revealed the expression of PICALM and PIN1. Conclusions This study explored the gene expression, molecular patterns, and immunological characteristics of SASP in patients with AIS using bioinformatics methods. It provides a theoretical basis and research direction for identifying new diagnostic markers for AIS, understanding the molecular mechanism of thrombosis, and improving the classification, diagnosis, treatment, and prognosis of AIS.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3