Validity of neural networks in determining lower limb kinematics in stationary cycling

Author:

Bini Rodrigo Rico1,Nascimento Vitor Bertoli2,Nibali Aiden1

Affiliation:

1. La Trobe University

2. Universidade Estadual de Londrina

Abstract

Abstract Purpose: Increasing access to marker-less technology has enabled practitioners to obtain kinematic data more quickly. However, the validation of many of these methods is lacking. Therefore, the validity of pre-trained neural networks was explored in this study compared to reflective marker tracking from sagittal plane cycling motion. Methods: Twenty-six cyclists were assessed during stationary cycling at self-selected cadence and moderate intensity exercise. Standard video from their sagittal plane was obtained to extract joint kinematics. Hip, knee, and ankle angles were calculated from marker digitisation and from two deep learning-based approaches (TransPose and MediaPipe). Results: Typical errors ranged between 1-10°for TransPose and 3-9°for MediaPipe. Correlations between joint angles calculated from TransPose and marker digitalization were stronger (0.47-0.98) than those from MediaPipe (0.25-0.96). Conclusion: TransPose seemed to perform better than MediaPipe but both methods presented poor performance when tracking the foot and ankle. This seems to be associated with the low frame rate and image resolution when using standard video mode.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3